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The relative dispersion of a scalar plume is examined experimentally. A passive
fluorescent tracer is continuously released from a flush-bed mounted source
into the turbulent boundary layer of a laboratory-generated open channel flow.
A two-dimensional particle image velocimetry–laser-induced florescence (PIV–
LIF) technique is applied to measure the instantaneous horizontal velocity and
concentration fields. Measured results are used to investigate the relationship between
the boundary-layer turbulence and the evolution of the distance-neighbour function,
namely the probability density distribution of the separation distance between two
marked fluid particles within a cloud of particles. Special attention is paid to the
hypothesis that a diffusion equation can describe the evolution of the distance-
neighbour function. The diffusion coefficient in such an equation, termed the ‘relative
diffusivity’, is directly calculated based on the concentration distribution. The results
indicate that the relative diffusivity statistically depends on particle separation lengths
instead of the overall size of the plume. Measurements at all stages of the dispersing
plume collapse onto a single curve and follow a 4/3 power law in the inertial
subrange. The Richardson–Obukhov constant is estimated from the presented dataset.
The relationship between the one-dimensional (1D) representation of the distance-
neighbour function and its three-dimensional (3D) representation is discussed. An
extended model for relative diffusivity beyond the inertial subrange is proposed based
on the structure of the turbulent velocity field, and it agrees well with measurements.
The experimental evidence implies that, while the diffusion of the distance-neighbour
function is completely determined by the underlying turbulence, the overall growth
rate of the plume is affected by both the turbulent flow and its actual concentration
distribution.
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1. Introduction
The concept of relative dispersion was first introduced by Richardson (1926), who

contended that the dispersion rate of a group of marked fluid elements in a turbulent
medium depends on the characteristic size of the cloud of marked elements. According
to empirical analysis on atmospheric diffusion data, he concluded that for a dispersing
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cloud or puff, the turbulent diffusivity is proportional to the four-thirds power of the
cloud’s characteristic size, i.e. the ‘4/3 law’. More rigorous analysis was given by
Batchelor (1952) based on Kolmogorov’s similarity hypothesis (Kolmogorov 1941).
Since then, there have been many theoretical and experimental studies focused on
relative dispersion. A thorough review was given by Monin & Yaglom (1975) and
more recently by Sawford (2001).

Relative dispersion can be explained by considering the mean-square separation
of two simultaneously dispersing fluid elements, hereinafter referred to as particles.
Assuming high-Reynolds-number turbulence and local isotropy, if the separation
distance l is within the inertial range (η � l � L, where η is the Kolmogorov length
scale and L is the integral length), similarity analysis indicates that

l2 − l20 = gεt3, (1.1)

where ε is the dissipation rate of turbulent kinetic energy, l0 is the initial separation
distance between marked particles at t = 0 and g is a universal constant (Obukhov
1941), known as the Richardson–Obuhkov constant. Batchelor (1952) emphasized the
importance of the initial separation l0. He argued that (1.1) is only true for t � t0,
where t0 = (l20/ε)

1/3, the time after which the Lagragian velocities of the two particles
become uncorrelated. According to dimensional analysis, Batchelor pointed out that

l2 − l20 =
11

3
C(εl0)

2/3t2, t < t0, (1.2)

revealing a linear (in time) growth rate regime.
Earlier experimental studies were devoted to verifying the Richardson–Obukhov

scaling (1.1) through observations of tracer plumes or clouds, assuming that the size
of a cloud is proportional to the mean-square particle separation. Many of these
studies claimed to observe the 4/3 law (or t3 growth of the mean-square separation
distance) in the surface mixed layer of oceans or lakes (Stommel 1949; Csanady 1963;
Okubo 1971), near the bed in coastal areas (Stacey et al. 2000), or in the atmosphere
boundary layer (Gifford 1957), based on the estimated diffusivity, cloud (plume)
growth rate or the decay rate of the mean centreline concentration. Based on the
same theoretical grounds, Fong and Stacey’s field measurement (Fong & Stacey 2003)
of a bottom released dye plume in the coastal ocean shows a length scale squared
law for diffusivity, where the scale of the plume falls into the two-dimensional (2D)
turbulence regime.

Recently, the Lagrangian trajectories of particle pairs have been measured directly
in the laboratory as well as through direct numerical simulation (DNS). By optically
tracking three-dimensional (3D) trajectories of particles in grid-generated turbulence,
Ott & Mann (2000) observed the Richardson–Obukhov law (1.1). It is rather surprising
because the Reynolds number of the flow is low (the largest Reynolds number based
on the Taylor microscale is Rλ = 104 among their datasets). By tracking particle
pairs in isotropic turbulence generated by DNS (Rλ = 230) Yeung & Borgas (2004)

are able to demonstrate the linear growth rate of

√
l2 − l20 in time for small t (and

l0/η = 1/4 ∼ 256). There is no clear evidence of the Richardson–Obuhkov scaling, they
argue due to the small Rλ. Bourgoin et al. (2006) generate a strong turbulent flow
(Rλ = 815) between two coaxial counter-rotating baffled disks, and track particle pairs
in 3D with high-speed digital cameras. Their data show excellent agreement with
Batchelor’s scaling (1.2) over a broad range of time scales (more than two decades).
However, the t3 scaling does not show up even for the highest Rλ. They thus concluded
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that the Richardson–Obukhov scaling requires not only a large separation between
the Kolmogorov time scale (tη) and the integral time scale (TL) of the turbulence,
but also a large separation between t0 and TL (TL/t0 must be much larger than 10).
This condition would probably not be satisfied in most practical situations, thus they
conclude that the t3 scaling should not be expected in most fluid flows.

Relative dispersion has also been described through the probability density function
(p.d.f.) of the separation distances of two particles. This concept, again, was first
introduced by Richardson (1926) as the ‘distance neighbour function’ in a one-
dimensional (1D) sense (i.e. the spherically averaged separation p.d.f.). Batchelor
(1952) extended it to a general 3D case and explicitly considered the joint p.d.f. of
two fluid particles, denoted as p2(x1, x2, t1, t2| y1, y2, s1, s2), such that p2 dx1 dx2 is the
probability that one fluid particle lies in a volume element dx1 centred at position x1

and time t1 and the other lies in a volume element dx2 centred at position x2 and time
t2, given their initial positions are y1 and y2 at the initial times s1 and s2, respectively.
The two-particle p.d.f. is of practical interest because the two-point concentration
correlation that results from a source S( y, s) can be related to p2 as

c(x1, t1)c(x2, t2) =

∫
s1�t1

∫
s2�t2

∫
V

∫
V

p2(x1, x2, t1, t2| y1, y2, s1, s2)

× S( y1, s1)S( y2, s2) d y2 d y1 ds2 ds1. (1.3)

Equation (1.3) has been the basis of a series of Lagrangian stochastic models (Durbin
1980; Thomson 1990; Borgas & Sawford 1994), through which the variance of
concentration fluctuations can be modelled by simulating the velocities and trajectories
of particle pairs.

If only relative dispersion is considered, also assuming the turbulence is
homogeneous and letting t1 = t2 = t , s1 = s2 = s, denoting x2 = x1 + ∆, y2 = y1 + ∆0,
then

p∆(∆, t |∆0, s) =

∫
p2(x1, x1 + ∆, t | y1, y1 + ∆0, s) dx1 (1.4)

is the separation p.d.f. where ∆ and ∆0 are separation vectors at time t and s,
respectively. It is hypothesized that the evolution of p∆ can be described by a
diffusion equation (Monin & Yaglom 1975) in the (∆, t) space:

∂p∆

∂t
= ∇ · [KR(∆)∇p∆], (1.5)

where KR(∆) is a relative diffusivity. For isotropic turbulence, KR is only a function
of the magnitude of separation, i.e. KR = KR(∆), where ∆ = |∆|. It should be noted
that the separation p.d.f. p∆ differs from Richardson’s ‘distance neighbour function’
(Richardson 1926) in that it is defined as a probability distribution of two particles
that results from many realizations, while the distance neighbour function (denoted
as q(l, t)) is the probability of the separation vector l of a pair of particles among
all particle pairs in a cloud at a time t . For a ‘pulse’-release cloud in an isotropic
turbulent flow field at time s, its distance-neighbour function q can be related to p∆

as

q(l, t) =

∫
p∆(l, t |l0, s)q(l0, s) dl0, (1.6)

and the following diffusion equation for q(l, t) is also true given (1.5) and (1.6),

∂q

∂t
= ∇ · [KR(l)∇q], (1.7)
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where the overbar ‘ ’ indicates ensemble averaging over many trials. Proof of (1.6)
and (1.7) can be found in Appendix A. The diffusion equation for the distance-
neighbour function was first proposed by Richardson (1926), which is in the same
format as (1.7), except without ensemble averaging on q . Here we argue that the
ensemble averaging is necessary as the relative diffusion process is random in nature
and the relative diffusivity is a statistical measure of turbulent flows. For example,
for a cloud whose size is smaller than the integral length of the underlying turbulent
flow, q at any given time is obtained through integration over the cloud. Although the
integration is effectively an ensemble averaging over many particle pairs, statistics of
turbulence (including the diffusivity) may not be converged over such a small volume
that is occupied by the cloud. Therefore (1.7) is not likely to be true without ensemble
averaging over many trials. With this argument, we will only consider the ‘ensemble
averaged’ distance neighbour function and use q to replace q hereinafter.

According to Richardson (1926), KR ∼ l4/3 if l falls in the inertial subrange, i.e.
the diffusivity depends on the ‘instantaneous separation’ l or, more appropriately, the
independent phase space variable. Batchelor (1952) argued that (1.7), if true, should

be so in a statistical sense, thus KR ∼ (
√

l2)4/3, where l2(t) =
∫

(l · l)q(l, t) dl .
Earlier studies simplify the diffusion equation to a one-dimensional case (Richardson

1926; Sullivan 1971):

∂q

∂t
=

∂

∂l

[
KR(l)

∂q

∂l

]
. (1.8)

Self-similar solutions to (1.8) exist when the initial condition is q(l, 0) = δ(l) i.e. a
Dirac delta function. For KR ∼ l4/3,

q(l, t) =
2

3
√

π

(
105

8l2(t)

)1/2

exp

[
−

(
105

8

l2

l2(t)

)1/3
]
, (1.9)

whereas from Batchelor (Batchelor 1952), KR = α(
√

l2)4/3, the solution is a Gaussian
distribution:

q(l, t) =
1√
2πl2

exp

[
− l2

2l2

]
. (1.10)

Although both solutions result in a t3 growth rate for the second moment l2,
Richardson’s solution (Richardson 1926) has a much sharper shape relative to a
Gaussian distribution, which implies the random separation is more intermittent. If
the initial condition has a particular distribution, like in most applications, there is
probably no general analytical solution for (1.8).

Moreover, if l is in the inertial subrange, the ‘4/3 law’ implies

KR = k0ε
1/3l4/3 or KR = k0ε

1/3(l2)2/3 (1.11)

according to Kolmogorov’s similarity hypothesis, where k0 is a non-dimensional
constant. If both k0 and the Richardson–Obuhkov constant g are universal constants,
their relation can be determined from the t3 law (defined in (1.1)) and the self-similar
solution (1.9) or (1.10). Richardson’s model (Richardson 1926) indicates that

g =
280

243
k3

0, (1.12)
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while Batchelor’s model (Batchelor 1952) shows

g =
8

27
k3

0 . (1.13)

Since turbulent flows and relative dispersion are inherently 3D processes, modern
analysis on the diffusion equation has adopted its 3D format but reduced it to a 1D
problem mathematically, assuming isotropy (Ouellette et al. 2006; Salazar & Collins
2009):

∂

∂t
q(l, t) =

1

l2
∂

∂l

[
l2KR(l, t)

∂q(l, t)

∂l

]
, (1.14)

where q(l, t) is the spherically averaged p.d.f. of separation, and, due to the
normalization of the p.d.f.,∫

V

q(l, t) dl =

∫ ∞

0

4πl2q(l, t) dl = 1. (1.15)

The mean-square separation is l2(t) =
∫ ∞

0
l2q(l, t)4πl2 dl.

With the 4/3 law speculated in (1.11), and the initial condition q(l, 0) = δ(l) (i.e.
releasing from a point source), the self-similar solution to (1.14) based on Richardson’s
model (Richardson 1926) is

q(l, t) =
429

70

√
143

2

(
1

πl2(t)

)3/2

exp

[
−

(
1287

8

l2

l2(t)

)1/3
]
, (1.16)

and the solution based on Batchelor’s model (Batchelor 1952) is

q(l, t) =

(
2π

3
l2

)−3/2

exp

(
−3

2

l2

l2

)
. (1.17)

Both of the solutions result in a t3 law for the growth of l2. However, the relation
between k0 and g is different: Richardson’s model results in

g =
1144

81
k3

0 (1.18)

and from Batchelor’s model,

g = 8k3
0 . (1.19)

Less experimental data exist to verify the profiles of q(l, t) and p∆(l, t). Sullivan
(1971) presented the measured q(l) from dye plume dispersion observations in the
surface mixed layer of Lake Huron. The profile is approximately Gaussian, which
agrees with Batchelor’s theory. In his field experiment, the concentration of tracer
dye was measured by pumping water into a fluorometer which might have destroyed
the small-scale structure of the concentration field. Recently, p∆ has been measured
by tracking particle pairs in three dimensions either in laboratory flows or through
DNS, and most results agreed with Richardson’s model (i.e. equation (1.16)) for small
initial separations (Ott & Mann 2000; Biferale et al. 2005; Berg et al. 2006; Ouellette
et al. 2006).

There is even less experimental evidence to verify the validity of (1.5) or (1.7) and
the functional form of the relative diffusivity KR . In this paper, they are examined
through measurements of 2D concentration distributions that result from a flush-bed
source, continuously released tracer plume into a laboratory turbulent boundary layer.
The methodology is similar to that of Sullivan (1971). For a continuously released
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Figure 1. Recirculating wide open-channel flume.

scalar plume being advected by a mean flow, a 1D representation of q(l, t) is related
to the concentration field,

q(l, t) ≈ q
(
l,

x

U

)
=

∫ ∞

−∞
c(x, y)c(x, y + l) dy(∫ ∞

−∞
c(x, y) dy

)2
, (1.20)

where x is the mean flow direction, y is the lateral direction defined based on the
right-hand rule, c(x, y) is the instantaneous 2D concentration field on a horizontal
plane and U is the mean velocity of the advecting flow on the same horizontal
plane. Using a coupled particle image velocimetry–laser-induced florescence (PIV–
LIF) technique, turbulent velocities and q can be measured with high accuracy and
resolution and its spatial derivatives are directly calculated. The relationship between
the 1D representation of q and its 3D representation is discussed. We use the results
to validate the existence of the diffusion equation for q (see (1.7)), examine the format
of the relative diffusivity KR , and estimate the Richardson–Obukhov constant g.

2. Experimental facilities and procedures
2.1. Recirculating wide open-channel flume

The plume dispersion experiment is conducted in a recirculating flume in the DeFrees
Hydraulics Laboratory at Cornell University. As shown in figure 1, the flume consists
of inlet, test and outlet sections. The test section is a 15.0 m long, 2.0 m wide and
0.64 m deep rectangular open channel with glass bottom and side walls. Water flow
is driven by two axial pumps and carried into the inlet section through two 0.406 m
diameter PVC pipes beneath the flume. Flow is conditioned in the inlet section by a
series of grids constructed of 51 mm deep stainless steel strap with 0.10 m × 0.10 m
square openings. A 25 mm thick ‘horse hair’ packing material layer is attached to
the top of the steel grids. These materials are sandwiched between polypropylene
moulded thermoplastic mesh sheets. Large vortices generated by the two pumps are
broken down by the grids and a quasi-homogeneous and isotropic turbulent flow is
produced. The turbulence is further conditioned by a nominally 4:1 contraction in
the vertical direction before entering the test section. A 4 mm polycarbonate rod is
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mounted laterally along the junction between the inlet and test sections to trip the
boundary-layer turbulence. At the end of the test section, a sloping sharp crested weir
is mounted to generate super-critical conditions at its crest, preventing free-surface
perturbations from reflecting back into the test section.

The plume is introduced from the bottom of the flume, through a flush-bed mounted
cylindrical porous stone (diameter d =14 mm), which is installed at 2.25 m downstream
of the leading edge of the test section and on the centreline of the channel; a passive
fluorescent tracer (fluorescein solution) is pumped into the boundary layer through
the porous stone. The coordinate system is defined in such a way that the centre of
the source is the origin, x points downstream, in the direction of the mean flow, z is
positive upwards and y is in the spanwise direction.

2.2. Single-camera coupled particle image velocimetry–laser-induced
florescence measurement technique

The turbulent velocity and scalar concentration fields are measured simultaneously
using a single-camera coupled PIV–LIF technique (Cowen, Chang & Liao 2001).
The PIV–LIF measurement technique consists of capturing three images in rapid
succession with a digital CCD camera. The first and third images record seed particles,
illuminated by a twin-pulsed (300 mJ pulse−1) 60 Hz Nd:YAG laser with illumination
wavelength of λPIV = 532 nm. The two particle images are post-processed to extract
the velocity fields. The second image records the fluorescent image of the scalar plume
excited by the scanning beam of a 1.2 W Argon-ion continuous-wave (CW) laser with
wavelength λLIF = 488 nm. This image is post-processed to yield the instantaneous
scalar concentration field. Fluorescein has an absorption peak essentially coincident
with λLIF and emits light over a broad range of wavelengths that begins around 490
nm, peaks at about 510 nm, and extends out beyond 600 nm (see Cowen et al. 2001,
figure 1 for excitation and emission spectra). An optical filter is used (long-pass filter
λ> λc =509 nm) such that λLIF < λc < λPIV and the majority of fluorescein emission
wavelength falls into the range λ> λc. As a result, scattered light from seed particles
illuminated by λLIF is rejected by the long-pass filter and is not seen in the LIF images,
thus ensuring high-fidelity plume-concentration measurements. Meanwhile, since the
absorption efficiency of fluorescein is low at λPIV , it only imparts a weak fluorescence
signal to the PIV images, and does not adversely affect the PIV interrogation analysis.
The great advantage of the technique is that two separate sets of images do not need
to be referenced to each other as all information is captured on the same camera.

The two lasers and their optical systems are mounted on a vertically adjustable,
rolling platform (see figure 2), allowing the generation of horizontal coplanar laser
sheets at different elevations and horizontal locations within the flow.

A DALSA 1M30P CCD camera is used to acquire PIV and LIF images. It has
a 12-bit grey scale pixel resolution and a spatial resolution of 1024 × 1024 pixels.
The full-speed frame rate of the camera is 30 Hz. Captured images are streamed to a
computer through a CamerLink interface and stored directly to a hard drive array in
real time.

2.3. Measurement procedures

The plume source, a solution of fluorescein, is stored in a reservoir which is connected
to the porous stone on the bottom of the flume through a plastic tube. Driven by
a peristaltic pump, the tracer is pumped out from the reservoir, and runs through a
two-chamber pressure fluctuation filter (Zarruk & Cowen 2008), then seeps through
the porous stone into the channel with a constant rate of 120 mm3 s−1. Given the
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Figure 2. Sketch of the optical configuration of the PIV–LIF system.

diameter of the porous stone, d = 14 mm, the exit velocity of the plume is 0.8 mm s−1.
This flow is considered weak (it is about one-thirtieth of the friction velocity, the
typical near-wall turbulent velocity scale) and its effect on channel boundary-layer
flow structure is assumed negligible except at locations very close to the source. The
mass concentration of the plume source is C0 = 600 parts per million (p.p.m.). Water
used to mix the fluorescein solution is taken from the flume immediately before the
experiment, hence the plume is essentially neutrally buoyant. For the experiments
presented in this paper, the average water depth is H =78.9 mm, the depth-averaged
velocity is Ub = 0.46 mm s−1, the average friction velocity is u∗ = 22.3 mm s−1, estimated
by fitting the measured vertical profiles of mean velocity with the log-law, and the
momentum thickness Reynolds number is Reθ = 1600.

Velocity and concentration fields of the dispersing plume are measured at two
elevations, z = 12 mm and z = 24 mm (z+ =200 and z+ = 400, respectively, where +

indicates wall unit scaling, i.e. normalized by the viscous length zν = ν/u∗, and ν is
the kinematic viscosity of water with the measured temperature of 14◦C). The digital
camera is placed underneath the tank, viewing vertically upwards. Measurements are
taken at 12 sections in the streamwise direction, covering a distance x =0.225–6.73 m
(16d ∼ 480d). At each measurement section, the field of view (FOV) of the images
is 0.45 m × 0.45 m. Hence, image resolution is 0.44 mm pixel−1, i.e. about 1.8η per
pixel and 1.4η per pixel for the two measurement elevations, where η ≡ (ν3/ε)1/4 is
the Kolmogorov length scale of the turbulence, and the dissipation rate ε is estimated
experimentally from the PIV results (see § 3.2). The PIV images are processed following
procedures described in Liao & Cowen (2005) to achieve high subpixel accuracy.
Through PIV interrogations, the 2D velocity field is evaluated on a 256 × 256 grid,
thus the resolution for velocity measurements is 4 image pixels (7.2η and 5.6η for
the two elevations, respectively). The interrogation subwindow has side lengths of
16 × 16 pixels. Resolution for LIF measurements is considered the same as that of
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x (m) H (cm) Ub (cm s−1) u∗ (cm s−1) Reθ Reτ ReR Rex

0.565 8.19 43.7 2.12 1600 1340 24 700 191 000
1.885 7.99 45.1 2.21 1520 1360 25 500 657 000
3.675 7.75 46.3 2.26 1580 1360 26 200 1 314 000
5.587 7.63 46.8 2.23 1690 1310 26 400 2 019 000

Table 1. Flow conditions at different streamwise locations.

the image itself, i.e. 0.44 mm pixel−1. It should be noted that the smallest scale of
scalar fluctuations is of the order of the Batchelor scale, ηB . The Schmidt number
for fluorescein in water is Sc =1950, thus ηB = η/

√
Sc =0.0226η. The current image

resolution is considerably larger than the smallest scalar ‘eddies’. In addition, the
Argon laser sheet in the measurements is about 2mm thick (∼5 pixels), hence the
true LIF resolution is even coarser than the image resolution; it is estimated to be
O(η) or O(100ηB).

For measurements at each section, image acquisition starts 2 min after the plume
is initiated. 400 image triples are acquired at a rate of 2 Hz (a duration of 200 s).
Since the flume is a recirculating type and the estimated recirculation time is 50 s,
background contamination is noticeable at the end of each experiment. Nevertheless,
the observed highest concentration of the background contamination is rather low
(about 3 counts on our 12-bit sensor), thus it can be neglected. Measurements at
every section and elevation are calibrated, following the steps described in Cowen
et al. (2001), to account for effects of laser light energy fluctuation, attenuation,
scanning speed of the laser beam, and the optical vignetting effect of the camera lens.
The flume is drained and refilled after each measurement. It took 10 days to acquire
the entire dataset. There are some measurement-to-measurement variations across
the overall experiment, due to variations in the water temperature, pump speed,
release rate of the plume source, etc. These variations are noticeable as will be shown
in the discussion that follows; however, they are small and taken to be negligible.

In order to fully characterized the turbulent flow structures, PIV measurements are
made on vertical planes along the centreline of the flume. They are taken at four
sections, centred at x = 0.565, 1.885, 3.675 and 5.585 m. The FOV of all these vertical
planes is 9.05 cm × 9.05 cm, covering the entire water depth.

3. Characteristics of the turbulent flow field
3.1. Vertical structure of the turbulent boundary layer

The flume utilized for this study was constructed with a fixed horizontal bed (zero
bed slope) hence the flow is not uniform in the streamwise direction; the water depth
H decreases and the mean flow speed accelerates with downstream distance. Table 1
lists the basic flow conditions measured by PIV at the four vertical planes along

the flume centreline. Ub ≡ (1/H )
∫ H

0
U dz denotes the depth-averaged mean velocity

on the centreline of the flume; u∗ is the friction velocity; Reθ is the momentum
thickness Reynolds number, Reτ ≡ UbH/ν is the friction velocity Reynolds number,
ReR ≡ UbR/ν, where R is the hydraulic radius, and Rex ≡ Ubx/ν. A scaling analysis
of the longitudinal momentum equation indicates that

∂U 2
b

∂x
= −g

∂H

∂x
− u2

∗
H

, (3.1)
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Figure 3. Vertical profiles of mean streamwise velocity measured at four locations. �,
x =0.56 m; �, x =1.88 m; �, x =3.67 m; �, x = 5.58 m; thin solid line, log-law profile
and viscous sublayer linear profile; bold solid line, DNS result.

where the streamwise acceleration can be approximated as ∂U 2
b /∂x ∼ 0.0056 (cm s−2),

the estimated streamwise hydrostatic pressure gradient is −g(∂H/∂x) ∼ 0.58 (cm s−2)
and the averaged bottom friction −u2

∗/H ∼ −0.61 (cm s−2). Thus the streamwise
acceleration can be neglected.

Vertical profiles of wall-scaled mean streamwise velocities U+ ≡ U/u∗ at four
downstream locations are shown in figure 3. The friction velocities u∗ are estimated
by least squares fitting the measured profiles with the log-law:

U (z)

u∗
=

1

κ
log

zu∗

ν
+ C, (3.2)

where κ =0.41, is von Kármán’s constant, and C is a constant taken to be 5.5. The
DNS results of the flat-plate turbulent boundary-layer simulation of Spalart (1988)
(Reθ =1410) are also shown in this figure for comparison. The PIV measurements
agree very well with the log-law for 30 <z+ < 200 at all measurement locations. The
DNS profile in the log-law region is slightly lower than our measurement, and its best
fit C is 5.0 instead of 5.5. This observation is consistent with Cowen & Monismith
(1997), who argued that it is because the flume bottom is not perfectly smooth,
compared to that in the DNS.

Figure 4 shows the profiles of the root-mean-square (r.m.s.) velocity fluctuations, δu

and δw , and the Reynolds stress −u′w′ in the wall region for z+ < 400. The comparison
with DNS results, while good near the wall, deviates away from the wall, particularly
for the streamwise velocity fluctuations. This is expected as the DNS is for an idealized
boundary layer with no turbulence sources other than the wall. The higher turbulent
fluctuations away from the wall are the result of the advection of decaying inlet-grid
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Figure 4. (a) Vertical profiles of the r.m.s. velocity fluctuations measured at four locations.
(b) Vertical profiles of the Reynolds stress. For both (a) and (b), symbols represent measured
results: �, x = 0.56 m; �, x = 1.88 m; �, x =3.67 m; �, x = 5.58 m; bold solid line, δu from
DNS; bold dashed line, δw from DNS; thin solid line, −u′w′ from DNS.

generated turbulence. For the region between 150 <z+ < 450, turbulent fluctuations
are relatively uniform (with variations less than 10 %). Measurements of horizontal
dispersion are made at z+ = 200 and 400, in an effort to avoid the effects of the
inhomogeneous turbulence in the boundary layer.

3.2. Turbulence characteristics

The most important parameter for turbulent relative dispersion is the dissipation
rate of turbulent kinetic energy, ε, which attests to the ‘small-scale’ universality
of turbulent flows under a statistically equilibrium state, despite various forms of
‘large-scale’ forcings. The dissipation rate of turbulent kinetic energy is defined as

ε ≡ 1

2
ν

(
∂ui

∂xj

+
∂uj

∂xi

)(
∂ui

∂xj

+
∂uj

∂xi

)
= ν

∂ui

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
. (3.3)

It is a summation of 12 independent terms while only six of them are available
from a 2D PIV measurement. If the turbulence is locally isotropic, as hypothesized by
Kolmogorov (1941) for sufficiently high Re turbulence, (3.3) becomes ε = 15ν(∂u/∂x)2.
Boundary layer turbulence in laboratory flows is not expected to be locally isotropic at
small Re. Based on experimental studies, Saddoughi & Veeravalli (1994) established
a criterion for local isotropy in turbulent shear flows, S∗

c ≡ S(ν/ε)1/2 < 0.01, where
S is the mean strain rate (S = ∂U/∂z in a 2D boundary-layer flow). In the present
case, it is estimated that S∗

c =0.20 and 0.13, for z+ =200 and z+ = 400, respectively,
hence the turbulence is locally anisotropic. George & Hussein (1991) propose that
turbulence is locally axisymmetric for a turbulent boundary layer, i.e. statistics of
velocity derivatives are invariant with respect to rotation of a preferred axis (along
the mean streamwise direction in the present case). As a result, the dissipation rate
becomes

εA = ν

[
−

(
∂u

∂x

)2

+ 8

(
∂v

∂y

)2

+ 2

(
∂u

∂y

)2

+ 2

(
∂v

∂x

)2
]
, (3.4)
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Figure 5. Estimated turbulent kinetic energy dissipation rate using different methods.
�, εux; �, εvy; +, εvx; �, εA; �, εp .

where the subscript ‘A’ denotes that ε is obtained by assuming local axisymmetry.
In the present study, local axisymmetry is considered as a reasonable approximation,
hence the dissipation rate is determined from 2D PIV measurements on horizontal
planes using (3.4). Finite differencing is applied to estimate the spatial gradients of
velocities. Cowen & Monismith (1997) estimated that 99 % of dissipation would be
included with finite differencing if the PIV grid size is smaller than 5.5η. Thus the PIV
grid resolution (1.8 mm) in some cases is slightly coarser than that required for using
direct differentiation to estimate ε (in the worst case, the PIV resolution is 7.3η),
thus slightly underestimating εA. For the measurement section, x = 3.22 ∼ 3.67 m,
εA = 9.8ν(∂u/∂x)2 for z+ = 200 and εA = 10.4ν(∂u/∂x)2 for z+ =400 compared to

ε = 15ν(∂u/∂x)2 for locally isotropic turbulence. For each of the 12 streamwise
sections, one value of εA is calculated by averaging over all the PIV interrogation grid
points on horizontal planes and over time. The result is considered as an estimation
of the dissipation rate at the centre point of the current FOV. Figure 5 shows the
streamwise distribution of estimated εA (triangles).

In the log-law region, the dissipation rate is approximately in balance with the
production rate. Thus the dissipation rate can be estimated by this assumption,
denoted as εP , and

εP = P ≡ −u′w′ ∂U

∂z
. (3.5)

For the four streamwise locations where vertical 2D PIV measurements are available,
εP is obtained from the vertical profiles of U (z) and the Reynolds stress u′w′(z). As
shown in figure 5, εP agrees with εA well.

The 1D velocity spectra for the two velocity components u(x, y) and v(x, y)
measured on horizontal planes are also calculated for each measurement section.
It is assumed that velocity fluctuations are statistically homogeneous on horizontal
planes, thus spectra are calculated directly without invoking Taylor’s frozen turbulence
assumption. As an example, spectra of u and v along the streamwise and
spanwise directions, i.e. Eux(κx), Evx(κx), Euy(κy) and Evy(κy), measured at section
x = 3.22 ∼ 3.67 m and elevation z+ = 400 are shown in figure 6, where κx and κy are
wavenumbers in the streamwise and spanwise directions, respectively. Three of the
four 1D spectra show a −5/3 slope which spans slightly less than one decade, the
exception being Euy . A local peak at κ = 2π/ls appears for Euy , where ls ≈ 0.25 m. This
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Figure 6. Typical 1D velocity spectra, measured at section x = 3.22 ∼ 3.67m and elevation
z+ = 400. Spectra are normalized by the Kolmogrov’s length scale and velocity scale, η and uη .

is evidence of the cellular secondary flow structure which is common in open-channel
flows (Vanoi 1946; Karcz 1966). Measured U (x, y) also exhibit spanwise variations
with an almost sinusoidal pattern and each flow cell pair is separated by about
0.25 m. There is, however, no obvious evidence that the secondary flow structures
contaminate the other three 1D spectra.

The 1D velocity spectra also indicate that the turbulence is not locally isotropic even
thought the −5/3 slope is present. Over the inertial subrange scales, Evx/Evy = 1.14
at z+ = 200 and 1.21 at z+ = 400, while it should be 4/3 if locally isotropic (Pope 2000).
Dissipation rate can also be estimated by fitting the measured Eux and Evy (the −5/3
region) with the universal longitudinal velocity spectrum ELL(κ) = (18/55)Cε2/3κ−5/3

and by fitting Evx with the transverse velocity spectra ENN (κ) = (24/55)Cε2/3κ−5/3.
The obtained dissipation rates are denoted as εux , εvy and εvx , respectively, and they
are also shown in figure 5 for comparison. Because of anisotropy, they are definitely
biased estimates of the true ε. The two longitudinal estimates εux and εvy agree well
and are substantially higher than εA, while the transverse estimation εvx is only slightly
higher than εA. All spectral estimates maintain a constant ratio with εA at all of the
12 measurement sections.

In estimating the dissipation rate in a coastal ocean boundary layer using a
submersible PIV system, Doron et al. (2001) proposed a variety of methods including
the first two methods introduced here. Their results also demonstrate that ε deduced
from the spectral methods are higher than those from ‘direct’ methods. In the following
analysis, we will use εA as the estimated dissipation rate.

The turbulent kinetic energy k is obtained at locations where both horizontal and
vertical PIV measurement results are available. Along with the estimated dissipation
rate, the length scales of the turbulence, including the characteristic size of the large
eddy L, the Kolmogorov length scale η and the Taylor microscale λ are readily
obtained by

L =
k3/2

ε
, η =

(
ν3

ε

)1/4

, λ =

√
10νk

ε
. (3.6)
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z+ = 200 z+ = 400

x (m) 0.45 1.5 5.0 0.45 1.5 5.0

ε (mm2 s−1) 627 665 700 289 362 413
η (mm) 0.24 0.24 0.24 0.30 0.28 0.27
L (mm) 116 110 114 140 147 112
λ (mm) 6.0 5.8 5.9 7.3 7.1 6.9
Rλ 157 153 158 156 168 168

Table 2. Velocity and length scales of the turbulence at the two measurement elevations.

Table 2 lists the measured length scales of the turbulence at three streamwise
locations, along with the Reynolds number based on Taylor’s microscale, defined as
Rλ =

√
kλ/ν. Most statistical values do not vary appreciably along the flow except

for ε at z+ = 400, which increases moderately with downstream distance due to the
growing boundary layer. Thus the turbulent flow field can be considered as nearly
homogenous in both the x and y directions in the test range of x = 0 ∼ 6 m.

4. Horizontal relative dispersion
4.1. Two-dimensional concentration field

The most salient feature of a dispersing plume released from a small source in
atmospheric and oceanic flows is its ‘meandering’ motion, which occurs due to the fact
that the lateral size of plume is small compared to the size of large eddies in typical
environmental flows. Eddies smaller than the size of the plume are most effective at
expanding and stirring the plume, while large eddies just move the plume as a whole.
Since relative dispersion is concerned only with the growth of a cloud, we have
removed the meandering effects of the plume by translating the reference frame to
the ‘centre of mass’ (COM) of the instantaneous plume, i.e. the COM reference frame
x ′o′y ′ is attached to the first moment (centroid) of the instantaneous lateral
concentration distribution, such that

x ′ = x, (4.1)

y ′ = y − yc, (4.2)

where yc is the COM,

yc ≡ 1

A

∫ ∞

−∞
yc(y) dy, (4.3)

A ≡
∫ ∞

−∞
c(y) dy, (4.4)

where c(y) is the instantaneous lateral concentration distribution. At the same time,
the instantaneous lateral width of the plume can be defined as the second central
moment of the lateral concentration distribution, i.e.

σ 2
I ≡ 1

A

∫ ∞

−∞
(y − yc)

2c(y) dy. (4.5)
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Figure 7. Instantaneous concentration distribution of the plume in the near and far fields.
The instantaneous centreline (bold white line) is smoothed by applying a Gaussian filter (with
filter half-width equal to the instantaneous plume width) to the line directly calculated (black
thin line) by (4.3). The dashed white lines are the e−2 boundaries of the plume, yc ± 2σI .

Examples of the reference frame translation are shown in figure 7, for typical near-
and far-field cases. It is evident that meandering in the near field is strong as the
variation of the centroid is relatively large; as the plume grows in width and the
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Figure 8. (a) Lateral profiles of the ensemble mean concentration in the ‘COM’ reference
frame. (b) Longitudinal evolution of the normalized lateral integrated mass.

concentration field becomes smoother in the far field, the centreline appears to be
‘straightened’.

The lateral mean concentration distribution in the ‘COM’ reference frame
is obtained by ensemble averaging 400 LIF images with their instantaneous
centrelines, yc, aligned, denoted as C ≡ c(y ′). A Gaussian distribution G(y ′) =
(AM/

√
2πσ ) exp(−y ′2/2σ ) is used to fit C(y ′) at every streamwise location in a

least-square sense. Fitting parameters AM (x) and σ are considered as the total
mass (per unit streamwise length and depth) and the mean lateral size, respectively.
Normalized mean concentration profiles σC(y ′)/AM at six streamwise locations, x =
0.3, 0.8, 1.1, 1.8, 3.0 and 5.5 m, are shown in figure 8(a). They collapse tightly on
a standard normal distribution. The streamwise evolution of the lateral integral of
the concentration distributions (AM ) at the two measurement heights is shown in
figure 8(b). They are normalized by the source flux per unit water depth, therefore
normalized values approaching 1.0 indicate the dye plume is becoming vertically
well mixed over the water depth. As shown in figure 8, the plume is not completely
vertically well mixed even at the furthest measurement location (x = 6.73 m). Net
upward flux is present at all measurement stations. However, the net flux is much
weaker at a distance of about 3 m or further, as the gradient of AM (x) becomes
small.

According to the measurements, σ 2
I (x) matches σ 2 very well (see figure 9). However,

the latter appears smoother since background noise has been minimized by averaging.

We will use σ 2 as a surrogate for σ 2
I (x) in the rest of this analysis, and σ is interpreted

as the characteristic ‘width’ of the dispersing plume, which can also be considered to be
half of the mean-square separation of marked fluid particles, as will be demonstrated
below (see (4.8)).

The apparent diffusivity is defined as the growth rate of σ 2, i.e. KA ≡ (dσ 2/dt)/2.
Fourth-order polynomial curve fits have been applied to the measured σ 2(x). The
fitted polynomial functions are used to calculate dσ 2/dx and the streamwise evolution
of the apparent diffusivity KA, which are shown in figure 18 in § 4.5 as the solid and
dashed lines. It is clear that KA increases with distance from the plume source,
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Figure 9. Change of the characteristic plume ‘width’ with streamwise location at both
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from the mean concentration distribution in the ‘COM’ reference frame; ∗,
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2, standard deviation of the 1D distance-neighbour
function Q(l, x).

suggesting that it depends on the size of plume, σ . It then asymptotes to a constant
as the plume size reaches the integral length of the underlying turbulence. In the
presented experiments, the inertial subrange of the turbulence is quite narrow (see
figure 6) and the upper limit of the inertial ‘eddy’ size is about 6 ∼ 7 cm, which is not
much larger than the lateral size of the plume even at the near source locations (e.g.
see figure 7). As a result, measured KA does not scale with σ 4/3 in the scale-dependent
region. Nonetheless, the 4/3 law is still evident at inner scales (inertial subrange) as
is shown in the following section.

4.2. Relative dispersion

Batchelor (1952) pointed out that Richardson (1926) was not able to distinguish
between two different definitions of the distance-neighbour function. First, the
distance-neighbour function can be interpreted as the fraction of a large number
of trials for which two particles are separated by a distance l at a given time t given
the same initial separation. Second, it can also be interpreted as the fraction of the
total number of particle pairs that are separated by l in an instantaneous spatial
distribution of a group of particles. The two definitions can be related by (1.6). It
is by the second definition that we can relate the distance-neighbour function to the
instantaneous concentration distribution of a scalar plume (see Appendix A). In this
paper, the 1D distance neighbour function (qy) can be obtained by calculating the
self-correlation of the instantaneous concentration in the spanwise direction

qy(l) =

∫
c(y)c(y + l) dy(∫

c(y) dy

)2
. (4.6)



Relative dispersion of a scalar plume in a turbulent boundary layer 429

According to (4.5), the second moment of qy(l), or the mean-square separation length
in the spanwise direction, is proportional to the instantaneous plume size squared

∫ ∞

−∞
l2qy(l) dl =

∫ ∞

−∞
l2

∫
c(y)c(y + l) dy(∫

c(y) dy

)2
dl

=

∫ ∞

−∞

∫ ∞

−∞
(y1 − y2)

2 c(y1)c(y2)(∫
c(y) dy

)2
dy1 dy2

= 2

∫ ∞

−∞
(y − yc)

2 c(y)∫
c(y) dy

dy = 2σ 2
I . (4.7)

Here, we introduce a third definition for the distance-neighbour function, which is
the ‘ensemble average’ of qy(l) over many trials of released clouds, i.e. Q(l) ≡ qy(l),
and according to (4.7), the mean-square separation of particle pairs within the plume,
denoted as σQ, is

σQ ≡
∫ ∞

−∞
l2Q dl = 2σ 2

I = 2σ 2. (4.8)

This relation is demonstrated in figure 9 where it shows σQ/
√

2 matches well with

both σ and

√
σ 2

I . As has been discussed in the introduction, the ensemble averaging
over the distance-neighbour function is necessary; otherwise the diffusion equation for
q(l, t) may not be true, since the relative diffusivity KR is a statistic of the turbulent
flow field, which requires ensemble averaging.

It should be noted that the situation described by (4.6) is not the distance-neighbour
function of a single release of puff or cloud, but a continuous release of puffs.
We are measuring concentration at a downstream location x from a continuous
source as an approximation of following a single release of puff in time through the
relation t = x/U . Results obtained with this approximation may affect the validity
of the relation between the particle pair separation p.d.f. and the distance-neighbour
function, i.e. equation (1.6).

If the evolution of the 1D distance neighbour function can be approximated as a
1D process, the evolution of Q can be described by

∂Q

∂t
=

∂

∂l

(
KR

∂Q

∂l

)
, (4.9)

following (1.8). We will examine if the four-thirds law applies to KR and whether

KR ∼ l4/3 or KR ∼ (
√

l2)4/3 = σ 4/3.
Since turbulence and relative dispersion are intrinsically 3D processes, it is

questionable whether the 1D simplification would be appropriate. With the
assumption of isotropy, the measured Q(l, t) can be associated with the 3D distance-
neighbour function q(l, t). There are two possible interpretations, as shown in
Appendix B. First, Q(l, t) could be the marginal p.d.f. of the joint p.d.f. q(l, t).
Following this assumption, the estimated 3D form of q is denoted as qM :

qM (l, t) = − 1

2πl

∂Q(l, t)

∂l
, (4.10)
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Q is cm−1; (b) streamwise evolution of Q; (c) lateral profiles of Q(l) at different downstream
distances, where the black solid line represents a standard normal distribution.

and the associated relative diffusivity is denoted as KM . Alternatively, Q(l, t) can be
considered to be the conditional p.d.f. of q(l, t) when the separation vector is chosen
to align with the y-axis. The estimated q following this assumption is then denoted
as qC , and

qC(l, t) =
Q(l, t)

8πσ 2
, (4.11)

with the associated relative diffusivity denoted as KC . The two estimations of the 3D
distance-neighbour function are assumed to follow the diffusion equation (1.14), and
their diffusivities will be examined and compared with that in the 1D model (4.9).

Following (4.6), the 1D distance-neighbour function Q(l) can be easily obtained
from the measured concentration field. Figure 10(a) shows the map of log Q on the
horizontal plane z+ = 200. The measurements from the 12 sections have been patched
together, and the results are very smooth in the crossflow direction, allowing direct
calculation of spatial derivatives using finite differencing. The streamwise evolution of
Q is shown in figure 10(b). Small discontinuities can be observed at junctions between
two measurement sections. A fourth-order polynomial function has been fitted to
log Q versus log x, shown as solid lines in the figure. The fitted polynomial functions
are used to estimate ∂Q/∂x, which can be converted to the time rate of change of Q as
∂Q/∂t =U (∂Q/∂x) where U is the local mean streamwise velocity measured by PIV.
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Lateral profiles of Q(l) at different downstream locations are shown in figure 10(c),
scaled by the standard deviation of the separation p.d.f. (distance-neighbour function)
σQ. They are, however, not self-similar. The shape of Q(l) near the source resembles
Richardson’s solution (sharp gradient for small l), it then relaxes towards a Gaussian
profile as x increases, rather slowly. Even at fairly far downstream distances, the shape
of Q(l) is still sharp compared to a Gaussian distribution. It should be noted that
even if Richardson’s theory were correct, we cannot expect Q(l) ∼ exp(−l2/3) since
the initial distribution has a finite size.

The estimated 3D form of the distance-neighbour functions, qC(l) and qM (l), is
calculated based on (4.11) and (4.10), respectively, and their spatial derivatives are
calculate using the same technique as for Q(l).

The excellent resolution and coverage of the present LIF measurements allow the
relative diffusivity KR to be calculated directly. From the diffusion equation (4.9), we
have

KR(l, x) =

U

∫ l

0

∂Q(l′, x)

∂x
dl′

∂Q(l, x)

∂l

, (4.12)

where ∂Q/∂x is obtained as the derivative of the fitted lines as shown in figure 10(b),
and ∂Q/∂l is obtained by direct numerical differentiation (e.g. finite difference) of the
lateral profiles. For the two estimated 3D models, their relative diffusivities are also
calculated directly according to (1.14), i.e.

KC(l, x) =

U

∫ l

0

l′2 ∂qC(l′, x)

∂x
dl′

l2
∂qC(l, x)

∂l

, (4.13)

KM (l, x) =

U

∫ l

0

l′2 ∂qM (l′, x)

∂x
dl′

l2
∂qM (l, x)

∂l

. (4.14)

The three calculated diffusivities are presented in figure 11, where they have been
non-dimensionalized by the external turbulence scales δv and L. For KR and KC ,
measurements at all locations collapse well in the range 0.1 < l/L < 6. It is clear that
for 0.1 < l/L < 1, both KR and KC unambiguously shows an l4/3-dependence. This is
direct evidence verifying Richardson’s theory while contradicting Batchelor’s argument
about KR . The 3D relative diffusivity based on the marginal p.d.f. assumption, KM ,
does not show an l4/3 regime. It does appear to follow a power function as KM ∼ l2

in the inertial subrange. However, the observed l2 law does not seem to scale with δv

and L (nor does it scale with ε) since data measured at different streamwise locations
do not collapse. This suggests that either the assumption that q is the marginal p.d.f.
of Q is not well posed, or more parameters are required to explain the observed l2

scaling.

4.3. Richardson–Obukhov constant, g

Measured KR(x, l) is plotted against ε1/3l4/3 for l <L in figure 12. Linear regressions
are applied to determine the scaling constant k0 in (1.11) with the intercept forced to
be 0. Similarly, the scaling constant k0 in the general 3D model can be determined
from the measured KC , following the assumption that Q(l) is the conditional p.d.f. of
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Figure 11. Relative diffusivities KR , KC and KM as a function of separation l, measured at
two elevations and at x = 45, 105, 150, 195, 255, 300, 345, 415, 455, 500, 555 cm, respectively.

the 3D form of q(l). The distributions of k0 along the streamwise direction from both
1D and 3D diffusion equations are presented in figure 13. Overall, k0 estimated from
both models is fairly uniform over the entire measurement range in the x direction.
Again, section to section variations are noticeable.



Relative dispersion of a scalar plume in a turbulent boundary layer 433

0.2 0.4 0.6 0.8 1.0

z+ = 200 z+ = 400

ε1/3 l 4/3 (cm2 s–1) ε1/3 l 4/3 (cm2 s–1)

K
R
(l

) 
(c

m
2  

s–1
)

0.2 0.4 0.6 0.8 1.0

x = 45 cm
   105
   150
   195
   255
   300
   345
   415
   455
   500
   555

0

0.2

0.4

0.6

0.8

1.0

1.2
(a) (b)

0

0.2

0.4

0.6

0.8

1.0

1.2
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Symbols represent measured data, straight lines are linear regressions of measurements.
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1D diffusion assumption, z+ = 200; �, 1D diffusion assumption, z+ = 400; +, 3D diffusion
assumption, z+ = 200; ∗, 3D diffusion assumption, z+ = 400.

Combining all data measured from the two elevations at all streamwise locations,
k0 = 0.87 ± 0.13 for the 1D diffusion case. The constant for the 3D diffusion case
has a slightly lower value, k0 = 0.77 ± 0.11. The uncertainties presented here are
±1.96 times the sample standard deviation of the measured k0 at all locations (i.e.
a 95 % confidence interval). The same notation will be used for uncertainties of
other measured parameters in this paper. For instance, p = ps ± δp, where ps is the
sample mean of the parameter p, and δp is 1.96 times the sample standard deviation.
Therefore the relative error of k0, denoted as δk0/k0, is about 15 % for the 1D case,
and 14 % for the 3D case.

The Richardson–Obukhov constant g has been the most important constant in
the theory of relative dispersion. It is easier to estimate g than to estimate k0 from
experimental or numerical studies, as the former can be determined by tracking
two particles, or following a dispersing cloud, while the latter requires examining
the evolution of the p.d.f. of separation (or the distance-neighbour function). As
discussed in the introduction, g is closely related to k0. If both the 4/3 law (according
to Richardson’s postulation, i.e. KR ∼ l4/3) and the t3 growth of the mean-square
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Figure 14. Measured Richardson–Obukhov constant g at different streamwise
locations. �, z+ = 200; �, z+ = 400.

separation are true, g = (280/243)k3
0 for the 1D diffusion equation (1.8), and g =

(1144/81)k3
0 for the 3D diffusion equation (1.14).

Calculated g values at all streamwise locations are plotted in figure 14. With the
assumption of a 1D diffusion process, and combining data from both elevations,
g = 0.77±0.29, while with the 3D assumption, g = 6.49±2.72, which is much higher.
Hence the relative error, δg/g, is 38 % for the 1D case and 42 % for the 3D case.

Despite these uncertainties, the measured KR(l) profiles in the near field agree
well with those in the far field in shape (see figures 11 and 12), suggesting that
the uncertainties of estimated values of both k0 and g may be mostly due to the
approximation of ∂Q/∂t using U (∂Q/∂x). It is difficult to identify all the sources of
random errors for the two constants. In particular the uncertainties associated with
spatial gradients of Q and qC and the numerical integral of them over l can not be
easily determined. However, the propagation of uncertainties from the errors of U

and ε can be evaluated. Ignoring other sources of errors, k0 ∼ Uε−1/3 and g ∼ U 3ε−1.
Thus the relative errors can be estimated as

δk0

k0

=
δU

U
+

1

3

δε

ε
and

δg

g
= 3

δU

U
+

δε

ε
. (4.15)

In this study, the streamwise mean velocity U is taken as the local ensemble
mean averaged over the spanwise (y) direction, since the plume meanders laterally.
However, due to the existence of a cellular secondary flow structure (see the discussion
on velocity spectra in § 3), the spanwise variation of U in terms of 1.96 times the
standard deviation is about 6–9 %. If the spanwise variation is the major source of
uncertainty for local measurement of U , δU/U ≈ 7.5 %. The dissipation rate ε is
also a spanwise-averaged value, and δε/ε ≈ 8 %. According to (4.15), the contribution
from the errors of U and ε is 10.2 % to δk0/k0 and is 30.5 % to δg/g. Therefore, nearly
2/3 of the random errors of the estimated k0 and g are due to the uncertainties of U

and ε.
The estimated g = 0.77±0.29, based on the assumption of a 1D diffusion equation, is

of the same order as those estimated in other recent studies. For example, g = 0.5 ± 0.2
according to laboratory 3D particle tracking experiments (Ott & Mann 2000); g =
0.8 ∼ 1.8 for stochastic models (Borgas & Sawford 1994); g = 0.7 according to the
DNS by Ishihara & Kaneda (2002); g = 0.55 ± 0.05 for forward relative dispersion
from both particle tracking experiments and DNS data (Berg et al. 2006); and more
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recently Franzese & Cassiani (2007) provided an analytical derivation of g which
depends on Reλ, and g converges to 0.7 as Reλ becomes large.

However, our estimation of g with the assumption of 3D diffusion is almost an
order of magnitude higher. It should be noted that the true 3D format of distance-
neighbour function q may not be locally isotropic in this case. The turbulent velocity
field in the boundary layer is not isotropic either, although some 1D velocity spectra
show a −5/3 power law. Similarly, the evidence of l4/3 scaling for the measured KR

and KC may not indicate a local isotropy of q . Therefore the conversion from the 1D
distance-neighbour function Q to the 3D q following the assumption of a conditional
p.d.f. could be wrong, or a biased estimation at least.

Estimated g from both the 1D and 3D models is probably overestimated. This is
due to the substitution of ∂/∂t with (1/U )(∂/∂x). The scalar concentration measured
at z+ = 200 and z+ = 400 contains tracer dye coming from all other elevations at
an earlier time as a result of vertical mixing. Therefore, a better estimate of mean
velocity that can be used to estimate ∂/∂t is the speed of the crossflow COM of the
plume, i.e.

Um =

∫ ∫
C(y, z)U (y, z) dz dy∫ ∫

C(y, z) dz dy

. (4.16)

This velocity, however, is not available from the experiments. 2D PIV–LIF
measurement on a vertical plane near the centreline of the mean plume was conducted
only at x = 3.67 m. The depth-averaged velocity weighted by the vertical distribution
of the mean scalar concentration is about 85 % of U measured at z+ = 200. Using this
reduced velocity, mean values of g would be changed from 0.77 to 0.47 for the 1D
case, and from 6.49 to 3.99 for the 3D case. It should be noted that g is very sensitive
to the change of U , as g ∼ U 3ε−1. Also, any underestimate of ε would result in an
overestimate of g. In this study, the dissipation rate is estimated as εA using (3.4)
following the assumption of local axisymmetry, which is the lowest among estimates
using other methods (see figure 5). Hence k0 and g could also be overestimated due
to the possible underestimation of ε.

4.4. An extended model for the relative diffusivity KR

In the following two subsections, we discuss the dispersion of the continuously released
plume as a whole. Specifically, how dispersion at larger scales can be linked to the
internal scaling, i.e. the 4/3 law in the inertial range. Although inner scaling dispersion
is intrinsically 3D, the following discussion is based on the 1D diffusion model for
practical reasons. First, the characteristic width of the plume σ is directly related to
the 1D distance-neighbour function Q(l, x). Second, measured 1D diffusivities KR in
the inertial range at all streamwise locations are consistent, although this is not a
justification that the 1D diffusion model is true.

The 4/3 law is only valid if the separation length falls into the inertial subrange.
As the separation length l approaches the integral length scale L and beyond, KR

approaches a constant value ( ∼ δvL) asymptotically (see figure 11). Based on the PIV
measurements of the turbulence structure, we found the following model for relative
diffusivity agrees very well with the measured KR at both small (inertial range scale)
and large (integral scale) separation lengths. The proposed model, denoted as Km, is

Km = cmumlm, (4.17)
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Figure 15. Determined coefficients in the model of relative diffusivities.
�, z+ = 200; �, z+ = 400.

where cm is a constant to be determined, and the model velocity scale um and model
length scale lm are both functions of the separation l. For a pair of particles at any
instant, only the difference between their velocities is responsible for dispersion. Thus
the velocity scale in the model is defined as the square root of the lateral structure
function of the turbulence field, namely

um(l) =

√
[v(y) − v(y + l)]2. (4.18)

According to Kolmogorov’s law of universal similarity, um defined in such a way
should scale with (εl)1/3 in the inertial subrange. As l gets large enough (∼L), v(y)
and v(y + l) become uncorrelated and um =

√
2δv .

The length scale lm is modelled as

lm(l) =

∫ l

0

ρvy(l
′) dl′, (4.19)

where ρvy is the lateral auto-correlation coefficient of the velocity field, i.e.

ρvy(l) =
v(y)v(y + l)

δ2
v

. (4.20)

This definition suggests that as l becomes large, lm ∼ L. Thus at a large separation
distance, Km ∼ δvL.

The constant cm is determined by fitting the measured KR with the model Km, and
the results are shown in figure 15. Combining data from both elevations, cm = 1.40 ±
0.21.

The comparison between the model and measured relative diffusivities is shown in
figure 16. The agreement is striking, considering the fact that KR and Km are obtained
from the two independent measurements (PIV and LIF).

4.5. ‘Apparent’ diffusivity and relative diffusivity

It should be noted that to our knowledge this is the first experimental determination
of KR . Previously relative dispersion was investigated by studying the growth rate of
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Figure 16. Comparison between the measured relative diffusivity KR and the model relative
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z+ =400.

the mean-square size of a cloud or plume, which is different, and we denote this as
the ‘apparent’ diffusivity KA. KA can be related to KR by

KA =
1

2

∂σ 2

∂t
=

1

4

∂

∫ ∞

−∞
l2q(l) dl

∂t
=

1

4

∂

∫ ∞

−∞
l2Q(l) dl

∂t

=
1

4

∫ ∞

−∞
l2

∂Q(l)

∂t
dl =

1

4

∫ ∞

−∞
l2

∂

∂l

(
KR

∂Q

∂l

)
dl

=
1

2

∫ ∞

−∞

(
KR + l

∂KR

∂l

)
Q dl. (4.21)
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Thus KA depends not only on the properties of the turbulent velocity field, in terms of
KR , but also on the exact concentration distribution of a dispersing plume (or cloud),
in terms of Q(l). In most, if not all previous field experiments on relative dispersion,
the size of the plume was much smaller than the eddy size which corresponds to
the lower wavenumber limit of the inertial subrange, denoted as L. We can assume
Q(L) ≈ 0. Within the inertial subrange, it is commonly assumed that KR is given by
a power law KR ∼ ln, where n= 4/3 in the case of 3D turbulence (Richardson’s 4/3
law) and n= 2 in the case of large-scale 2D turbulence (Fong & Stacey 2003). From
(4.21),

KA ∼
∫ ∞

−∞
lnQ dl. (4.22)

Without specifying the exact shape of Q(l), if we just assume that it is self-similar,
such that

Q(l) =

f

(
l

σ

)
σ

, (4.23)

and substitute it into (4.22), we have

KA ∼
∫ ∞

−∞
σnψnf (ψ) dψ = σn

∫ ∞

−∞
ψnf (ψ) dψ ∼ σn, (4.24)

where ψ ≡ l/σ . Therefore, if the assumption of self-similarity were true and σ < L,
observed KA would present the same power law as KR does, thus the method based
on plume size growth is valid. In the present study, however, the separation of large
eddies (limited by the height above the channel bottom) from the viscous scales is
small, and the plume quickly becomes larger than inertial scale eddies. As a result,
the measured σ 2 does not show a t3 tendency.

Up to this point, it has been clear that the turbulent relative diffusivity, which is
responsible for the dispersion of the distance-neighbour function, is largely determined
by the turbulent medium, regardless of the concentration field itself. On the other
hand, according to (4.21), the apparent diffusivity is a weighted average of the relative
diffusivity, i.e. average of KR + l( dKR/dl), weighted by Q(l), which is a property of
the scalar distribution. This concept is illustrated in figure 17, which shows how the
apparent diffusivity, as an overall property of turbulent diffusion, is derived.

The terms KR(l) and l( dKR/dl) are calculated from the measure turbulent velocity
distribution, according to the proposed model equation (4.17). After normalization
by δv and L, their distributions for all measurement locations are similar. The second
term, l( dKR/ dl), is relatively small, and peaks at around l =L. The distribution of
Q(KR + l( dKR/dl)) is strongly affected by the shape of Q(l). There is also a peak
value in this distribution, and the corresponding separation length can be interpreted
as the size of the eddy which is most responsible for the overall expansion of the
plume. This eddy size has not increased much as the plume grows, but its relative
contribution decreases significantly.

As a result the integration of Q(KR +l( dKR/dl)) over all l is carried out to calculate
the apparent diffusivity. The results are compared with the measured KA, and they
agree very well, as shown in figure 18.
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Figure 17. Contribution of relative diffusivity at different separation to the apparent
diffusivity, measured at z+ = 200.
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equation (4.21). —, measured KA at z+ = 200; −−, measured KA at z+ = 400; �, KA calculated
from the model at z+ =200; �, KA calculated from the model at z+ = 400.
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5. Conclusions
Recent advances in the theory of turbulent relative dispersion have focused on

understanding and modelling the statistics of the spread of two fluid particles, as
it is the fundamental physics that governs the diffusion of scalar concentrations as
well as their fluctuations and spatial/temporal structures in turbulent media. In this
paper, we present an alternative approach by measuring the turbulent concentration
distribution of a passive scalar, the auto-correlation of which can be interpreted as
the p.d.f. of separation distances of a cluster of particles in a turbulent flow. This
approach is not new, having been proposed in concept by Richardson (1926), i.e.
the distance-neighbour function, or the equivalent p.d.f. of particle pair separations;
however, the accuracy and resolution of LIF measurements allow it to be examined
in detail. The presented results are the first experimental evidence to support the
hypothesis that simple diffusion equations (1.5) and (1.7) may be used to describe the
evolution of the separation p.d.f. (Richardson 1926; Batchelor 1952; Monin & Yaglom
1975; Salazar & Collins 2009). Taking the cross-plume concentration correlation as
the 1D format of the distance-neighbour function, the relative diffusivity (KR) can be
directly calculated from the measurements. The calculated KR unambiguously show
a 4/3 power-law scaling with the separation distance, l, in the inertial subrange.
This result agrees with Richardson’s hypothesis (Richardson 1926) and contradicts
the statements made by Batchelor (1952), who argued that KR should only depend
on the local size of the spread of the scalar distribution and be independent of l.
The difference between Batchelor’s and Richardson’s theories on KR is significant
as it results in very different scalar structures, i.e. a Gaussian versus non-Gaussian
distribution of the separation p.d.f.. Since the 3D format of the distance-neighbour
function cannot be determined experimentally in this study, it is estimated from the
1D format with the assumption of local isotropy. In this paper, the 1D distance
neighbour function is interpreted as either a conditional p.d.f. or a marginal p.d.f. of
the 3D function. While the marginal p.d.f. model does not show a 4/3 scaling, the
conditional p.d.f. model does.

The estimated Richardson–Obukhov constant based on the 1D diffusion equation
(g =0.77 ± 0.29) is close to those found in other recent studies. However, with the 3D
diffusion equation and the conditional p.d.f. model, g = 6.49±2.72, which is almost an
order of magnitude higher than that derived from the 1D diffusion equation. This large
discrepancy may indicate: (i) the actual distance neighbour function resulting from a
dispersing plume in a turbulent boundary layer may not be locally isotropic, just as
the underlying turbulence itself is not locally isotropic; (ii) the relation between the
measured 1D distance-neighbour function and the 3D distance-neighbour function
may not be simply described as a conditional p.d.f. model; (iii) the Richardson–
Obukhov constant g may take different values for 1D and 3D dispersion processes.
The estimated scaling constant k0 in the 4/3 scaling law is 0.87 ± 0.13 for the 1D
diffusion equation and 0.77 ± 0.11 for the 3D diffusion equation. The difference
between the 1D and 3D result is much smaller compared with that for g.

The uncertainties of g and k0 are largely due to the estimation of ∂/∂t by U (∂/∂x)
and the uncertainties associated with the dissipation rate ε. Both g and k0 are likely
to be overestimated since the local mean velocity U is assumed to be the mean
advection speed of a cloud or puff within the continuously released plume. This is
almost certainly an overestimation as the plume is not vertically well mixed and the
concentration decreases from the channel bottom to the water surface. Moreover, it
should be noted that the experiment presented in this paper is a continuous plume
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release from a flush-bed source into a turbulent boundary layer, not a ‘pulse’ release
of puff. The obtained distance-neighbour function is not exactly the same as originally
proposed by Richardson. Therefore, these results, including the two constants k0 and
g, may not be comparable to those obtained from tracking particle pairs in locally
isotropic flows.

The Reynolds number of the flow in the present study is rather low (Rλ ≈ 150 ∼ 170),
and the dependence of g on Reynolds number has not been addressed in this paper.
This should be included in future studies.

Practically, for most turbulent scalar diffusion models, the property of the
underlying turbulent flow is taken as the fundamental parameter that controls the
spread and dilution of the concentration distribution, or the size of the distribution
is included in some scale-dependent plume dispersion models (Stacey et al. 2000).
According to (4.21), the actual concentration distribution should also be included, at
least for determining the apparent diffusivity, the rate at which the squared size of the
plume grows. On the other hand, the diffusion of the structure Q(l, t) in separation
space is only a function of the flow field. Experimental results suggest that within
the inertial subrange scale, KR is universally determined by the dissipation rate for
equilibrium turbulence. Also, the extended 1D model for KR proposed in this paper
is completely based on the Eulerian structure of turbulence, and it agrees well with
measured KR at both inertial subrange and integral scales.

It should be noted that the effect of the actual concentration distribution on the
turbulent scalar diffusivity may not be as important if the spread of concentration
is much larger than the inertial scales of the turbulence. At integral scales, the
relative diffusivity approaches a constant value which scales with the external scales
of the turbulence, and the concentration distribution de-correlates at large scales. The
integral in (4.21) will become a constant value, if the distance-neighbour function
also develops to an equilibrium state. Therefore, relative dispersion and the effect of
the concentration distribution are only significant for small size plumes, relative to
the largest scales of the turbulence, or the structure of scalar fluctuations within the
inertial scales. For example, greater understanding of the relative diffusion equation
may help to answer some scientific questions related to the olfactory function of odour
plume tracking animals, such as lobsters, crabs, dogs and moths. These animals have
developed robust and efficient chemotactic algorithms to track odours to their sources
in a turbulent surrounding environment (Murlis, Elkinton & Carde 1992; Atema
1995). Hydrodynamic studies on the ‘sniffing’ of a lobster have been conducted by
Koehl et al. (2001) by stroking an antennule of a real lobster (Panulirus argus) with the
same speed at which it ‘sniffs’ into a ‘odour’ plume containing fine scale structures, and
the results indicated these structures can be captured and well preserved in the array of
chemosensory hairs on the surface of the antennule. Lobsters may use the distribution
of the fine concentration structure to search for targets (sources). According to the
present study, the evolution of small-scale scalar structures is statistically determined
by the diffusion equation of the distance-neighbour function, thus an inverse solution
can help to discover information related to the source, such as its size, distance, and
direction relative to the current position.

We would like to acknowledge the sponsor of this work, Office of Naval Research
(through grant Nos. N00014-98-1-0774 and N00014-99-1-0591, Dr Keith Ward,
Program Officer).
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Appendix A. Relation between particle separation probability density function
and the distance-neighbour function

For a dispersing ‘cloud’ or ‘puff’ in a homogeneous and isotropic turbulent flow with
concentration distribution c(x, t), the distance-neighbour function is then essentially
the spatial auto-correlation of concentration:

q(l, t) =

∫
V

c(x, tc(x + l, t) dx

M2(t)
, (A 1)

where M(t) =
∫

V
c(x, t) dx which is the total mass, and the overbar means ensemble

averaging over many trials. Assume the cloud originates from a ‘pulse’ release source
with distribution S( y, s) = S( y)δ(s), and

∫
V

S( y) d y =M according to conservation of
mass. Therefore,

q(l0, s) =

∫
V

S( y)S( y + l0) d y

M2
. (A 2)

Following (1.3),

c(x, t)c(x + l, t) =

∫
V

∫
V

p2(x, x + l, t | y, y + l0, s)S( y)S( y + l0) d y dl0. (A 3)

Dividing (A 3) by M2 and then integrating over x, and using (1.4), we have

q(l, t) =

∫
V

∫
V

p2(x, x + l, t | y, y + l0, s) dx

∫
V

S( y + l0) d y

M2
dl0

=

∫
V

p∆(l, t |l0, s)q(l0, s) dl0. (A 4)

Hence (1.6) is proved.
Multiplying the diffusion equation of particle separation p.d.f. (1.5) by q(l0, s) and

integrating over l0, we get∫
V

∂p∆

∂t
q(l0, s) dl0 =

∫
V

∇ · [KR∇p∆] q(l0, s) dl0, (A 5)

where the operator ∇ means taking gradient over l , thus

∂

∂t

∫
V

p∆q(l0, s) dl0 = ∇ ·
[
KR∇

∫
V

p∆q(l0, s) dl0

]
. (A 6)

According to (1.6) which was just proved, (A 6) becomes

∂q

∂t
= ∇ · [KR(l)∇q] , (A 7)

which is equation (1.7).
Through the above analysis, the dynamics of particle pair dispersion can be

associated with the relative dispersion of a ‘cloud’ or ‘puff’. If a diffusion equation
can be applied to describe the p.d.f. of the particle pair separation, it can also be
applied to the distance-neighbour function. Both equations share the same diffusion
coefficient KR(l, t).
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Appendix B. Relationship between the one-dimensional and three-dimensional
isotropic distance-neighbour function

Denote the general 3D form of the distance neighbour function as
f (l, t) = f (l1, l2, l3, t). Assuming an isotropic distribution, f is radially symmetric,

i.e. f = q(l, t), where l =
√

l21 + l22 + l23 . Thus the diffusion equation is mathematically
1D, i.e. equation (1.14). In this paper, the cross-plume concentration correlation
obtained experimentally, Q(l, t), can be interpreted as a 1D representation of q(l, t).
There are two ways that they could be associated with each other.

(i) Q(lx, t) can be considered as a marginal p.d.f. of f (l1, l2, l3, t), i.e. Q is the
integral of q in one direction (l1) over the other two directions (l2, l3):

Q(l1, t) =

∫ ∞

−∞

∫ ∞

−∞
f (l1, l2, l3, t) dl2 dl3. (B 1)

The integration is over the plane of fixed l1. Due to the radial symmetry of q , it can
be written as

Q(l1, t) =

∫ ∞

0

q(l, t)2πh dh, (B 2)

where h =
√

l2 − l21, or
√

l22 + l23 , and 2πh dh = 2πl dl. Therefore,

Q(l1, t) =

∫ ∞

l1

q(l, t)2πl dl. (B 3)

Taking the derivative with respect to l1,

∂Q(l1, t)

∂l1
= −q(l1, t)2πl1. (B 4)

Replacing l1 by l, the 3D form of the distance-neighbour function, here denoted as
qM , can be related to Q as

qM (l, t) = − 1

2πl

∂Q(l, t)

∂l
. (B 5)

(ii) Q(l1, t) can also be considered as the conditional p.d.f. of f (l1, l2, l3, t), i.e.

Q(l1, t) = fC(l1, t |l2 = 0, l3 = 0) =
f (l1, l2 = 0, l3 = 0, t)

fM (l2 = 0, l3 = 0, t)
, (B 6)

where fM (l2 = 0, l3 = 0, t) is the marginal p.d.f. of f (l1, l2, l3, t), while l2 = 0 and
l3 = 0:

fM (l2 = 0, l3 = 0, t) =

∫ ∞

−∞
f (l1, l2 = 0, l3 = 0, t) dl1 = 2

∫ ∞

0

q(l1, t) dl1. (B 7)

From (B 6) and (B 7), it is clear that

f (l1 = l, l2 = 0, l3 = 0, t) = q(l, t) = 2Q(l, t)

∫ ∞

0

q(l, t) dl. (B 8)

Thus, Q(l, t) has the same shape as q(l, t) but they are normalized in different ways:∫ ∞
0

Q(l) dl = 1, while
∫ ∞

0
4πl2q(l, t) dl = 1. Multiplying (B 8) by 4πl2 and integrating

over l,

1 = 8π

∫ ∞

0

l2Q(l, t) dl

∫ ∞

0

q(l, t) dl. (B 9)
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It should be noted that
∫ ∞

0
l2Q(l, t) dl =2σ 2(t) (see (4.7) and (4.8)), therefore∫ ∞

0
q(l, t) dl =1/16πσ 2. Substituting it into (B 8), the relationship between Q(l, t)

and q(l, t) (here it is denoted as qC(l, t)) can be established:

qC(l, t) =
Q(l, t)

8πσ 2
. (B 10)
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Berg, J., Lüthi, B., Mann, J. & Ott, S. 2006 Backwards and forwards relative dispersion in
turbulent flow: an experimental investigation. Phys. Rev. E 74 (1), 016304.

Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. & Toschi, F. 2005 Lagrangian
statistics of particle pairs in homogeneous isotropic turbulence. Phys. Fluids 17 (11),
115101.

Borgas, M. S. & Sawford, B. L. 1994 A family of stochastic models for two-particle dispersion in
isotropic homogeneous stationary turbulence. J. Fluid Mech. 279, 69–99.

Bourgoin, M., Ouellette, N. T., Xu, H., Berg, J. & Bodenschatz, E. 2006 The role of pair
dispersion in turbulent flow. Science 311, 835–838.

Cowen, E. A., Chang, K. A. & Liao, Q. 2001 A single-camera coupled PTV-LIF technique. Exp.
Fluids 31, 63–73.

Cowen, E. A. & Monismith, S. G. 1997 A hybrid digital particle tracking velocimetry technique.
Exp. Fluids 22, 199–211.

Csanady, G. T. 1963 Turbulent diffusion in lake huron. J. Fluid Mech. 17, 360–384.

Doron, P., Bertuccioli, L., Katz, J. & Osborn, T. R. 2001 Turbulence characteristics and
dissipation estimates in the coastal ocean bottom boundary layer from PIV data. J. Phys.
Oceanogr. 31 (8), 2108–2134.

Durbin, P. A. 1980 A stochastic model of two-particle dispersion and concentration fluctuations in
homogeneous turbulence. J. Fluid Mech. 100, 279–302.

Fong, D. & Stacey, M. 2003 Horizontal dispersion of a near-bed coastal plume. J. Fluid Mech. 489,
239–267.

Franzese, P. & Cassiani, M. 2007 A statistical theory of turbulent relative dispersion. J. Fluid
Mech. 571, 391–417.

George, W. K. & Hussein, H. J. 1991 Locally axisymmetric turbulence. J. Fluid Mech. 233,
1–23.

Gifford, F. J. 1957 Relative atmospheric diffusion of smoke puffs. J. Meteorol. 14, 410–414.

Ishihara, T. & Kaneda, Y. 2002 Relative diffusion of a pair of fluid particles in the inertial subrange
of turbulence. Phys. Fluids 14 (11), L69–L72.

Karcz, I. 1966 Secondary currents and the configuration of a natural stream bed. J. Geophys. Res.
71, 3109–3116.

Koehl, M. A. R., Koseff, J. R., Crimaldi, J. P., McCay, M. G., Cooper, T., Wiley, M. B. & Moore,

P. A. 2001 Lobster sniffing: antennule design and hydrodynamic filtering of information in
an odor plume. Science 294, 1948–1951.

Kolmogorov, A. N. 1941 Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk
SSSR 32, 19–21.

Liao, Q. & Cowen, E. A. 2005 An efficient anti-aliasing spectral continuous window shifting
technique for PIV. Exp. Fluids 38 (2), 197–208.

Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics , Vol. 2. MIT Press.

Murlis, J., Elkinton, J. S. & Carde, R. T. 1992 Odor plumes and how insects use them. Annu.
Rev. Entomol. 37, 505–532.

Obukhov, A. M. 1941 Spectral energy distribution in turbulent flow. Izv. Akad. Nauk SSSR Ser.
Geogr. Geofiz. 5, 452–566.



Relative dispersion of a scalar plume in a turbulent boundary layer 445

Okubo, A. 1971 Oceanic diffusion diagrams. Deep-Sea Res. 18, 789–802.

Ott, S. & Mann, J. 2000 An experimental investigation of the relative diffusion of particle pairs in
three-dimensional turbulent flow. J. Fluid Mech. 422, 207–223.

Ouellette, N. T., Xu, H., Bourgoin, M. & Bodenschatz, E. 2006 An experimental study of
turbulent relative dispersion models. New J. Phys. 8, Art. No. 109.

Pope, S. B. 2000 Turbulent Flows . Cambridge University Press.

Richardson, L. F. 1926 Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc.
Lond. A (110), 709–727.

Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high
Reynolds number. J. Fluid Mech. 268, 333–372.

Salazar, J. P. L. C. & Collins, L. R. 2009 Two-particle dispersion in isotropic turbulent flows.
Annu. Rev. Fluid Mech. 41, 405–432.

Sawford, B. 2001 Turbulent relative dispersion. Annu. Rev. Fluid Mech 33, 289–317.

Spalart, P. R. 1988 Direct simulation of a turbulent boundary-layer up to Rθ = 1410. J. Fluid Mech.
187, 61–98.

Stacey, M. T., Cowen, E. A., Powell, T. M., Dobbins, E., Monismith, S. G. & Koseff, J. R. 2000
Plume dispersion in a stratified near-coastal flow: measurements and modeling. Cont. Shelf
Res. 20 (6), 637–663.

Stommel, H. 1949 Horizontal diffusion due to oceanic turbulence. J. Mar. Res. 8, 199–225.

Sullivan, P. J. 1971 Some data on the distance-neighbour function for relative diffusion. J. Fluid
Mech. 47, 601–607.

Thomson, D. J. 1990 A stochastic model for the motion of particle pairs in isotropic high-Reynolds-
number turbulence, and its applications to the problem of concentration variance. J. Fluid
Mech. 210, 113–153.

Vanoi, V. A. 1946 Transportation of suspended sediment by water. Trans. ASCE 111, 67–133.

Yeung, P. K. & Borgas, M. S. 2004 Relative dispersion in isotropic turbulence. Part 1. Direct
numerical simulations and Reynolds-number dependence. J. Fluid Mech. 503, 933–124.

Zarruk, G. A. & Cowen, E. A. 2008 Simultaneous velocity and passive scalar concentration
measurements in low Reynolds number neutrally buoyant turbulent round jets. Exp. Fluids
44 (6), 865–872.


